The C. elegans Protein EGL-1 Is Required for Programmed Cell Death and Interacts with the Bcl-2–like Protein CED-9

نویسندگان

  • Barbara Conradt
  • H.Robert Horvitz
چکیده

Gain-of-function mutations in the Caenorhabditis elegans gene egl-1 cause the HSN neurons to undergo programmed cell death. By contrast, a loss-of-function egl-1 mutation prevents most if not all somatic programmed cell deaths. The egl-1 gene negatively regulates the ced-9 gene, which protects against cell death and is a member of the bcl-2 family. The EGL-1 protein contains a nine amino acid region similar to the Bcl-2 homology region 3 (BH3) domain but does not contain a BH1, BH2, or BH4 domain, suggesting that EGL-1 may be a member of a family of cell death activators that includes the mammalian proteins Bik, Bid, Harakiri, and Bad. The EGL-1 and CED-9 proteins interact physically. We propose that EGL-1 activates programmed cell death by binding to and directly inhibiting the activity of CED-9, perhaps by releasing the cell death activator CED-4 from a CED-9/CED-4-containing protein complex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Human Bcl-2 cannot directly inhibit the Caenorhabditis elegans Apaf-1 homologue CED-4, but can interact with EGL-1.

Although the anti-apoptotic activity of Bcl-2 has been extensively studied, its mode of action is still incompletely understood. In the nematode Caenorhabditis elegans, 131 of 1090 somatic cells undergo programmed cell death during development. Transgenic expression of human Bcl-2 reduced cell death during nematode development, and partially complemented mutation of ced-9, indicating that Bcl-2...

متن کامل

The C. elegans protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9.

The developmental control of apoptosis is fundamental and important. We report that the Caenorhabditis elegans Bar homeodomain transcription factor CEH-30 is required for the sexually dimorphic survival of the male-specific CEM (cephalic male) sensory neurons; the homologous cells of hermaphrodites undergo programmed cell death. We propose that the cell-type-specific anti-apoptotic gene ceh-30 ...

متن کامل

The Regulation of Programmed and Pathological Cell

Programmed cell death, or apoptosis, is important in the development and homeostasis of metazoans. In the nematode C. elegans, four genes, egl-1, ced-9, ced-4, and ced-3, constitute the core pathway acting in all somatic programmed cell deaths. This pathway is evolutionarily conserved in humans. The BH3-only protein EGL-1 is transcriptionally upregulated in cells fated to undergo programmed cel...

متن کامل

Translocation of C. elegans CED-4 to nuclear membranes during programmed cell death.

The Caenorhabditis elegans Bcl-2-like protein CED-9 prevents programmed cell death by antagonizing the Apaf-1-like cell-death activator CED-4. Endogenous CED-9 and CED-4 proteins localized to mitochondria in wild-type embryos, in which most cells survive. By contrast, in embryos in which cells had been induced to die, CED-4 assumed a perinuclear localization. CED-4 translocation induced by the ...

متن کامل

Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene.

Temporal control of programmed cell death is necessary to ensure that cells die at only the right time during animal development. How such temporal regulation is achieved remains poorly understood. In some Caenorhabditis elegans somatic cells, transcription of the egl-1/BH3-only gene promotes cell-specific death. The EGL-1 protein inhibits the CED-9/Bcl-2 protein, resulting in the release of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 93  شماره 

صفحات  -

تاریخ انتشار 1998